Тема Механика. Динамика и Статика
03 Движение с переменным ускорением
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела механика. динамика и статика
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#76677

Автомобиль массой m  = 1500 к г  движется с постоянной скоростью и затем разгоняется на прямолинейном горизонтальном участке дороги. График зависимости скорости от времени при разгоне показан на рисунке. В конце разгона сила тяги двигателя равна F  = 600  Н
  т  . Считайте, что при разгоне сила сопротивления движению пропорциональна скорости.
1) Используя график, найдите ускорение автомобиля в начале разгона.
2) Найдите силу тяги F0   в начале разгона.
3) Какая мощность P0   передаётся от двигателя на ведущие колёса в начале разгона?
(Физтех, 2023, 10)

PIC

Источники: Физтех, 2023, 10

Показать ответ и решение

Так как ускорение – это dv
dt  , то воспользуемся геометрическом смыслом производной функции в точке, а именно найдем тангенс угла наклона графика в точке t = 0  :

|---------------------|
|a(0) = tan(α ) = Δv--|
------------------Δt--|

Далее поймем какие силы действуют на автомобиль: сила тяги и сила сопротивления, причем они направлены в разные стороны. Запишем это математически:

F0 − kv0 =  ma (0)
(1)

Остается лишь найти коэффициент пропорциональности k  . Его можно найти из графика: в конце разгона автомобиль имеет установившуюся скорость, а значит ˙v = 0  . Запишем 2 закон Ньютона в момент конца разгона.

F  − kv   =  0 =⇒   k =  Fk--
 k     уст               vуст

Подставим полученное выражение в (1).

|-------------------|
|            -Fk-   |
|F0 = ma0  + v   v0 |
--------------уст---
(2)

Чтобы ответить на финальный вопрос задачи вспомним, что P  = ⃗F ⋅⃗v  . А значит:

|---------|
P0 =  F0v0|
-----------
(3)

Ответ:

Ошибка.
Попробуйте повторить позже

Задача 2#57461

С поверхности земли вертикально вверх со скоростью v0   бросили шарик массой m  . Через время    t  он достиг наивысшей точки траектории. На какое расстояние переместился камень за это время? Считать, что сила сопротивления прямопропорциональна скорости, то есть F =  − kv  , где k  - известная постоянная.

Показать ответ и решение

Запишем второй закон Ньютона для шарика в проекции на ось y  (ось направлена вниз):

ma  = − (mg +  kv) ⇒  mΔv  =  − (mg + kv)Δt

Для произвольного i  -того момента уравнение будет выглядеть так:

m Δvi = − (mg  + kvi)Δti

где произведение viΔti = Δhi  , следовательно суммируя по всем i  уравнение:

m Δv  = − mg Δt  − k Δh
     i          i       i

Получим:

m (0 − v0) = − mgt − kH

     mv0  − mgt
H  = -----------
          k
Ответ:

Ошибка.
Попробуйте повторить позже

Задача 3#57460

Лодку массой m  = 100 к г  тянули за верёвку по водоёму с постоянной скоростью v0 = 1 м/с  . В произвольный момент времени верёвка оборвалась. Найдите путь который пройдёт лодка после этого, считая что сила сопротивления зависит только от скорости и ускорения лодки и определяется выражением: F = − αv − βa  , где α = 10 Н  ⋅ с∕м  , β =  50 Н ⋅ с2∕м  .

Показать ответ и решение

Запишем второй закон Ньютона для лодки:

ma  = F  ⇒  ma  = − αv − βa

        Δv--
(m + β )Δt  = − αv

Для произвольного i  -того момента уравнение будет выглядеть так:

(m + β )Δvi  = − αviΔti

где произведение viΔti = ΔLi  , следовательно суммируя по всем i  уравнение:

(m +  β)Δvi =  − α ΔLi

Получим:

(m + β )(0 − v0) = − α (L −  0) ⇒ (m  + β)v0 = αL

    (m  + β)v0    (100 + 50) ⋅ 1
L = ---------- =  -------------=  15 м
         α             10
Ответ:

Ошибка.
Попробуйте повторить позже

Задача 4#57459

Лодку массой m  , стоящую в спокойной воде, толкнули со скоростью v0   . Какой путь пройдет она до того, как остановится, если сила сопротивления движению пропорциональна скорости: F  = αv  ?

Показать ответ и решение

В любой момент движения ускорение лодки, согласно второму закону Ньютона, равно a =  − α-v
       m  , где v  -скорость лодки в этот момент. Это пример движения с переменным ускорением (чем меньше скорость, тем медленнее она уменьшается), при котором в случае идеального выполнения условий задачи лодка будет двигаться бесконечно долго (хотя и очень медленно в конце). Из этого. правда, не следует, что тормозной путь будет бесконечным.

Умножим обе части предыдущего уравнения на небольшой промежуток времени Δt  , за который изменениями v  и a  можно пренебречь:

         α
aΔt = − -- vΔt
        m

Теперь заметим, что aΔt− это приращение скорости Δv  за время Δt  , а vΔt  - приращение пути Δl  за это же время. Так как момент времени был выбран совершенно произвольно, можно сделать вывод, что для того чтобы скорость изменилась на Δv  лодка должна пройти путь

       m
Δl = − --Δv
       α

(минус в выражении объясняется тем, что Δv  отрицательно). Из условия ясно, что за достаточно большое время скорость лодки уменьшается от начального значения v0   практически до нуля. Тогда весь пройденный путь будет равен

    m
l = --v0
    α
Ответ:

Ошибка.
Попробуйте повторить позже

Задача 5#31794

Симба решил стать десантником. Но чтобы быть уверенным в своей безопасности, он решил убедиться с какой установившейся скоростью будет лететь кот, пока парашют не раскроется. Для этого было решено провести эксперимент по запуску различных объектов. В ходе эксперимента Симба выяснил, что с достаточно большой точностью сила сопротивления воздуха в безветренную погоду может быть выражена формулой:

Fсопр = αvnSm ρk

где α  – безразмерный коэффициент, равный 0, 5  , S  – характерная площадь поверхности тела (характерная площадь поверхности Симбаеда S =  0,02 м2   ), v  – скорость тела, ρ  – плотность воздуха (принять равной            3
ρ = 1 кг/м   ), m, n,k  – некоторые числа. Найдите, с какой скоростью будет лететь Симба в затяжном прыжке (пока парашют не раскроется), если его масса равна m =  3 кг  .
Подсказка от Симбы: чтобы обрести знание, необходимо задуматься где вверх, где низ, где метры, а где килограммы. И воспользоваться тем, что чаще всего мы забываем.

Показать ответ и решение

Найдем единицы измерения каждой величины, входящей в уравнение

              к-г ⋅ м
[Fсопр] = H  =   с2

       мn
[vn] = -n-
       с

[Sm ] = м2m

       кгk
[ρk] = -3k-
       м

Тогда

                    n+2m−3k    k
[α ⋅ vn ⋅ Sm ⋅ ρk] = м-------⋅ кг
                        сn

Тогда получаем систему уравнений

(
||| n + 2m −  3k = 1 ⇒  m =  1
{
| k = 1
||(
  n = 2

Тогда по второму закон Ньютона при установившейся скорости

                   ∘  -----
M  g = F    ⇒  v =    M-g--= 54,8 м/ с
        сопр          αSg
Ответ:

Ошибка.
Попробуйте повторить позже

Задача 6#31793

Тело массой m  бросают вертикально вверх с поверхности Земли, вдоль которой с постоянной скоростью u  дует ветер. Сила сопротивления воздуха пропорциональна скорости тела и равна F⃗ = − k⃗v  . Через время τ  тело возвращается на землю на расстоянии S  от точки бросания с вертикальной составляющей скорости, которая на Δv  меньше стартовой скорости. Найдите работу сил трения о воздух за всё время полёта.
(Всеросс., 1998, финал, 10 )

Источники: Всеросс., 1998, финал, 10

Показать ответ и решение

При движении вверх тело под действием ветра смещается по горизонтали вдоль оси X  (см. рис.).

PIC

Причем его движение описывается уравнением

m Δvxi = k (u −  vxi)Δti.  (1)

При движении по вертикали вверх выполняется уравнение

m Δvyi = − (kvyi + mg )Δti,  (2)

а в обратном направлении

m Δvyi =  (− kvyi + mg )Δti.  (3)

Суммируя по всем i  уравнения (1), (2) и (3), получим

mvx1  = ku τ − ks,  (1′)

− mvy0  = − kH  − mg τ1,  (2′)

                          ′
mvy1  = − kH  + mg τ2,  (3 )

где τ1   – время подъема тела, τ2   – время его падения на землю, vy0   – начальная скорость тела, а vx1   и vy1   – горизонтальная и вертикальная проекции конечной скорости. Из (1’), (2’) и (3’) имеем

(v  + v  ) = g(τ +  τ) = g τ,
  y1   y0       1    2

а из (1’) соответственно       kuτ −  ks
vx1 = ---------.
         m

Работа силы трения равна изменению кинетической энергии тела

     mv2y0   m (v2y1 + v2x1)   m          k2        2
A =  -----−  -------------= -- Δvg τ − --(uτ − s )
      2           2          2         m
Ответ:

Ошибка.
Попробуйте повторить позже

Задача 7#31792

Тело массой m  , брошенное под углом к горизонту, имеет в верхней точке траектории ускорение a = 4g ∕3  (g  – ускорение свободного падения). Определить силу сопротивления воздуха в этой точке.
(«Росатом», 2011 и 2012, 11)

Источники: Росатом, 2011 и 2012, 11

Показать ответ и решение

PIC

В верхней точке траектории на тело действуют сила тяжести m⃗g  , направленная вертикально вниз, и сила сопротивления воздуха ⃗F
  c  , направленная горизонтально (см рисунок). Поэтому из второго закона Ньютона для данного тела

m ⃗a = m ⃗g + ⃗F
             c

имеем

      ∘  -----------
ma  =    m2g2 + F 2с,

где =  4g∕3  – ускорение тела в этой точке. Отсюда находим

     ∘ -------------   √ --
Fc =   m2g2  − m2a2  = --7mg.
                        3
Ответ:

Ошибка.
Попробуйте повторить позже

Задача 8#31791

Тело, брошенное с поверхности Земли со скоростью v0   вертикально вверх, к моменту падения потеряло за счет сопротивления воздуха 1%  своей кинетической энергии. Сколько процентов кинетической энергии потеряет к моменту падения это же тело, если его бросить вертикально вверх со скоростью v0∕2  ? Сила сопротивления пропорциональна k-й  степени скорости тела, где k >  0  .
(Всеросс., 2002, ОЭ, 11)

Источники: Всеросс., 2002, ОЭ, 11

Показать ответ и решение

Как вытекает из условия задачи, сила сопротивления воздуха пренебрежимо мала по сравнению с силой тяжести. Поэтому при вычислении работы силы сопротивления в первом приближении можно считать, что скорость тела на высоте z  равна ∘v2--−-2gz-
   0  . Следовательно, сила сопротивления зависит от высоты z  следующим образом:

F    =  α(v2−  2gz)k∕2,
 сопр      0

где α  – коэффициент пропорциональности.
Потеря кинетической энергии равна удвоенной работе сил сопротивления воздуха на участке от высоты 0 до высоты v20∕2g  : ΔE  =  − 2A  .

Разобьем участок         v20
0 ≤ z ≤ ---
        2g  на большое число N  маленьких участков длиной        v20
Δz =  -----
      2gN  точками       2
zj = v0-j-.
     2gN  Тогда

      ∑N                       vk+2 ∑N              j
A = α    (v20 − 2gzj)k∕2ΔZ  = α -0---   (1 − j∕N )k∕2 --.
      j=1                       2g  j=1             N

Следовательно,       k+2
A  ∼ v0   .
Таким образом, при уменьшении начальной скорости в 2 раза потери энергии уменьшатся в 2k + 4  раз, а начальная энергия в 4 раза. Следовательно, при начальной скорости v0∕2  тело потеряет энергию ΔE   = 2−k𝜀E0   , где E0   – начальная энергия, 𝜀  – численный коэффициент.

Ответ:

Ошибка.
Попробуйте повторить позже

Задача 9#31790

Мальчик выстрелил из пневматического пистолета маленьким шариком, направив ствол пистолета вертикально вверх. Спустя время τ = 8,7 с  шарик вернулся в точку, откуда был произведён выстрел, имея в момент падения скорость u =  37 м/с
 2  . Какова скорость u
 1   , с которой шарик вылетел из ствола пистолета, если сила сопротивления воздуха пропорциональна скорости шарика? Ускорение свободного падения            2
g = 10 м/ с   .
(«Ломоносов», 2014, 9)

Источники: Ломоносов, 2014, 9

Показать ответ и решение

При движении по вертикали вверх выполняется второй закон Ньютона

m Δvyi = − (kvyi + mg )Δti,  (1)

а в обратном направлении

m Δvyi =  (− kvyi + mg )Δti.  (2)

Суммируя по всем i  уравнения (1) и (2), получим

                           ′
− mu1 =  − kH −  mg τ1,  (1)

mu2 −  kH +  mg τ2,  (2′)

где τ1   – время подъема тела, τ2   – время его падения на землю. Из (1’) и (2’) имеем

(u2 + u1) = g(τ1 + τ2) = gτ,

откуда

u1 = gτ − u2 =  50 см/с.
Ответ:

Ошибка.
Попробуйте повторить позже

Задача 10#31789

Деревянный диск в форме круга толкнули от одного берега реки к другому, сообщив ему скорость 0,4 м/ с  против течения под углом α(sinα =  0,8)  к линии берега. Через 60 сек унд  диск достиг другого берега, сместившись вдоль берега вниз по течению на расстояние 2 м  (считая от точки на другом берегу, расположенной напротив точки старта). Ширина реки 7 м  . Найдите скорость течения реки, считая её одинаковой по всей ширине реки. (Ответ дать в см/ с  , округлив до целых.)
(«Физтех», 2015, 10–11)

Источники: Физтех, 2015, 10–11

Показать ответ и решение

PIC

Пусть поперек реки направлена ось Oy  , а ось Ox  по течению реки. Скорость вдоль оси Oy  одинакова для наблюдателей на берегу и на воде, а скорость вдоль оси Ox  отличается на величину скорости u  течения реки.

v   = v  sin α.
 0y    0

За время t = 60 с  диск, двигаясь с такой скоростью вдоль оси Oy  , сместится на расстояние

h ∗ = v0yt = v0tsin α = 0,4 ⋅ 60 ⋅ 0,8 = 19, 2 м.

А ширина реки 7 м  , следовательно, скорость диска падает из-за сопротивления воды. Перейдем в систему отсчета течения. Пусть скорость диска в этой системе отсчета равна V  . Второй закон Ньютона для диска, запишем в виде

m⃗a =  − k ⃗V

В проекциях на оси

may  =  − kVy  max  − kVx

Влияние сопротивления воды обозначим как f(t)  , тогда

                     h       7
h =  v0yf (t)  f(t) = --t = -----60 = 21, 875 c
                     h∗    19, 2

Векторы скоростей по отношению к берегу и к воде связаны теоремой сложения скоростей

         ⃗
⃗v = ⃗u + V  ⇒  V0x = v0x − ux

С учетом v0x = − v0cosα  , ux = u

V0x = − (u + v0 cosα )

Тогда перемещение за время t

x =  V0xf(t)

Для наблюдателя на плоту диск переместился из точки A  в точку d  . По отношению к берегу диск переместился, с учетом течения реки, из точки A  в точку C  . Из рисунка видно, что

                                              fv0cos α + Δl
ut = |x | + Δl = (u + v0 cosα )f (t) + Δl ⇒  u =  --------------.
                                                  t − f
Ответ:

Ошибка.
Попробуйте повторить позже

Задача 11#31788

Лодку оттолкнули от берега озера, сообщив ей скорость v0 = 1 м/с  . Лодка, двигаясь прямолинейно, имела на расстоянии s1 = 14 м  от берега скорость v1 = 0,3 м/ с  . На каком расстоянии от берега скорость лодки была v = 0,5 м/с  ? Считать, что сила сопротивления движению лодки пропорциональна её скорости.
(МФТИ, 2006)

Источники: МФТИ, 2006

Показать ответ и решение

При движении выполняется второй закон Ньютона для лодки

m Δvi = − kviΔti

Сумма viΔti  дает расстояние, а Δvi  – изменение скорости.
Тогда для первого и второго случаев

                                                v − v
m (v1 − v0) = − ks1  m (v − v0) = − ks ⇒ s = s1------0 = 10 м
                                               v1 − v0
Ответ:

Ошибка.
Попробуйте повторить позже

Задача 12#31786

В безветренную погоду на озере была проведена серия испытаний радиоуправляемой модели катера с бензиновым двигателем, в ходе которых выяснилось, что при скорости v1 = 5,00 км/ ч  путевой расход топлива составляет λ = 20, 0 г/к м  , а при скорости v  = 15,0 к м/ч
 2  расход равен λ  = 40,0 г/км
 2  . Запас топлива на борту модели M  = 100 г  .
⋅ Выведите зависимость путевого расхода топлива λ  от скорости V  .
⋅ Какое максимальное время τx  может работать двигатель у неподвижной модели?
⋅ При какой скорости модели v0   путевой расход топлива минимален и каково его значение λ0   ? Полученные результаты должны быть найдены с погрешностью, не превышающей 1%  .
⋅ На какое максимальное расстояние L
  0   и за какое время τ
 0   сможет уплыть модель?
⋅ Какое значение τ1   может принимать время прохождения моделью расстояния L1 =  3 км  ?
Примечание. Считайте, что при работе двигателя массовый расход топлива μ (г/с)  линейно зависит от мощности силы сопротивления, а сила сопротивления пропорциональна скорости модели относительно воды. Модель движется равномерно, и при любой скорости её осадка не меняется.
(Всеросс., 2017, финал, 9)

Источники: Всеросс., 2017, финал, 9

Показать ответ и решение

При движении со скоростью v  расстояние L  катер преодолевает за время τ = L-.
    v  При этом мощность сил сопротивления равна

N =  Fv =  kv2,

где k  – размерный коэффициент.
Так как по условию массовый расход топлива линейно зависит от мощности сил сопротивления

μ =  μ0 + αN,

где μ0   и α  – размерные коэффициенты, то линейный расход топлива равен

λ = μ-τ = αv +  μ0-
     L          v

Найдем константы α  и μ
  0   по известным значениям v
 1   , λ
 1   , v
 2   и λ
 2   . Для этого запишем уравнения для линейного расхода

            μ
λ1 = αv1 +  -0-
            v1

            μ0-
λ2 = αv2 +  v2

Решая систему, получим:

     λ1v1 − λ2v2       г ⋅ ч
α =  ---2----2---= 2,5----2-
       v1 − v2          км

μ  = v1v2(v1λ2-−-v2λ1) = 37, 5-г
 0        v21 − v22              ч

С учетом найденных размерных коэффициентов уравнение для линейного расхода приобретает вид:

            37,5-
λ = 2,5v +   v

График этой зависимости представлен на рисунке 9.10.

PIC

В режиме холостого хода двигатель неподвижный модели сможет проработать      M
τx = --- = 160
     μ0  мин. Умножим полученное выражение для λ  на v  , получим квадратное уравнение (с размерными коэффициентами, полученными ранее)

    2
2,5v  − λv + 37, 5 = 0

дискриминант которого обращается в ноль при λ0 = 19,4 г/к м  , что соответствует v0 = 3,87 км/ ч  .

Максимальное расстояние, на которое может уплыть модель, двигаясь с оптимальной скоростью,       M
L0 =  ---=  5,2 км
      λ0  , и на его преодоление требуется время      L
τ0 = -0-=  80 мин
     v0  . Зависимость предельной дальности движения от скорости приведена на рисунке 9.11.

PIC

Так как требуемое расстояние L1 = 3 км  меньше предельной дальности L0   , то модель не обязана придерживаться оптимальной стратегии и может плыть быстрее или медленнее. Из ранее полученного квадратного уравнения 2,5v2 − λv + 37, 5 = 0  с учетом     M
λ = --- = 100∕3 г/ км
    L1  . Выбирая при решении больший корень, находим максимально допустимую скорость v11 = 12, 1 км/ч  , при которой ещё хватает топлива на заданной дистанции L1   , и получаем соответствующее ей минимально возможное время движения 15 м ин  . Большему корню v12 = 1,24 км/ ч  соответствует максимально возможное время движения 145 м ин  . Окончательно получаем 15 м ин ≤ τ1 ≤ 145 м ин
(Официальное решение ВсОШ)

Ответ:

Ошибка.
Попробуйте повторить позже

Задача 13#31785

Однородный цилиндр массы m  и радиуса R  касается двух параллельных длинных вертикальных пластин, движущихся с постоянными скоростями v1   и v2   вверх (рис.). Между пластинами и поверхностью цилиндра существует вязкое трение, сила его пропорциональна относительной скорости соприкасающихся поверхностей (⃗Fтр = − γv⃗отн   ). Коэффициенты вязкого трения для первой и второй пластин равны γ1   и γ2   соответственно.
1) Найдите установившуюся угловую скорость цилиндра, а также скорость его центра.
2) При каком условии цилиндр будет двигаться вверх
(Всеросс., 2017, РЭ, 10)

PIC

Источники: Всеросс., 2017, РЭ, 10

Показать ответ и решение

PIC

Примем за положительное направление движения цилиндра – вниз, а за положительное направление вращения – по часовой стрелке. Тогда скорость точки A  цилиндра, соприкасающейся с левой доской

v  = v − ωR
 A

Аналогично для точки B  цилиндра, соприкасающейся с правой доской (рис. 2)

vB = v + ωR

При установившемся движении сумма сил, приложенных к цилиндру, равна нулю, а также равен нулю суммарный момент сил трения относительно оси O  цилиндра(рис. 3):

(
{ mg  = F1 + F2

( F1R  = F2R

Подставив

F1 = γ1(v1 + vA) = γ1(v1 + v − ωR ), F2 = γ2(v2 + vB) = γ2(v2 + v + ωR ),

получаем систему уравнений

(
{ mg =  γ1(v1 + v − ωR ) + γ2(v2 + v + ωR )

( γ1(v1 + v − ωR ) = γ2(v2 + v + ωR )

решая которую, находим

         (                      )
ω =  -1-  mg--(γ1-−-γ2) + v  − v
     2R       γ1γ2        1    2

    (γ1 + γ2)mg    v1 + v2
v = ------------ − -------
       4 γ1γ2         2

Как видно из выражения для скорости, цилиндр движется вверх, если

          (γ1 +-γ2)mg-
v1 + v2 >    2γ1γ2

(Официальное решение ВсОШ)

Ответ:

Ошибка.
Попробуйте повторить позже

Задача 14#31784

Тело B  удерживается неподвижно в воздушном потоке, движущемся со скоростью ⃗u  . В некоторый момент тело отпускают без начальной скорости. Траектория его движения изображена на рисунке. В установившемся режиме тело падает с постоянной скоростью под углом β  к горизонту. Под каким углом γ  к горизонту тело начало двигаться? Сила сопротивления воздуха, действующая на тело, пропорциональна квадрату его скорости относительно воздуха и направлена противоположно ей.
(Всеросс., 2001, ОЭ, 10)

PIC

Источники: Всеросс., 2001, ОЭ, 10

Показать ответ и решение

Согласно условию

  ⃗
Fсопр = − α |v⃗отн|v⃗отн,

где α  – коэффициент пропорциональности.
Проекции ускорения тела на горизонтальную ось OX  и вертикальную ось OY  , направленную вниз, из второго закона Ньютона в проекциях на эти оси соответственно равны:

     -α        ∘  --------2---2-           -α   ∘ --------2----2
ax = m (u − vx)   (u −  vx) + vy.  ay = g − m  vy  (u − vx) + v y.

Здесь m  – масса тела, g  – ускорение свободного падения. При малых временах полета можно считать vx < < u  , vy < u  , αv2y < < mg  и движение тела происходит с постоянным ускорением.
Для малого промежутка времени Δt  координаты тела

        2  2            2
x ≈  αu--Δt-,   y ≈ gΔt--,
       2m             2

т.е.

       y-  -mg-
tgγ =  x = αu2 .

В установившемся режиме v  = u
 x  , αv2 =  mg
   y  . т.е.      ∘ ----
v =    mg--
 y      α  . В этом случае

           ∘  -----
      vy      mg
tg β = ---=    ---2.
      vx      αu

Таким образом

tgγ = tg2β ⇒  γ = arctg(tg2β ).
Ответ:

Ошибка.
Попробуйте повторить позже

Задача 15#31783

Наполненный гелием воздушный шарик имеет форму, близкую к сферической. Если отпустить его в безветренную погоду, скорость его установившегося (то есть равномерного) подъёма будет равна  v0   . Этот шарик привязали к багажнику велосипеда. Когда велосипедист на этом велосипеде ехал навстречу ветру со скоростью v  относительно земли, нить шарика отклонилась от вертикали на постоянный угол. Найдите этот угол, если скорость ветра равна u  . Считать, что при движении шарика в воздухе величина действующей на него силы сопротивления пропорциональна квадрату его скорости относительно воздуха.
(«Покори Воробьёвы горы!», 2014, 10–11)

Источники: Покори Воробьёвы горы, 2014, 10–11

Показать ответ и решение

PIC

В случае равномерного движения шарика вверх в безветренную погоду на него действуют сила Архимеда F
 A  , сила тяжести mg  и сила сопротивления воздуха F  = αv2
 c     0   (рис.), причём:

F  =  F +  mg ⇔  F   = αv2 + mg.   (1)
 A     c           A      0

При движении шарика, привязанного к багажнику, Fc =  α(u + v)2   , где (u + v)  – скорость шарика относительно воздуха и на шарик действует дополнительно сила натяжения нити T  (рис.). В проекции на ось x  , перпендикулярную нити:

F  sin α = α (u + v)2cosα +  mg sinα.
 A

или

FA =  α(u + v)2ctgα + mg.

Решая совместно с (1), получим

          ( (v + u)2)
α =  arctg  ----2---
               v0

(Официальное решение ПВГ)

Ответ:

Ошибка.
Попробуйте повторить позже

Задача 16#31782

Два шара с радиусами R  и 2R  имеют плотности 3ρ  и ρ  соответственно. Шары связаны очень длинной нитью. Шары сбрасывают вниз с воздушного шара, и благодаря сопротивлению воздуха через некоторое время они движутся равномерно. Найти силу натяжения нити. Выталкивающей силой, действующей на шары со стороны воздуха, пренебречь. Считать силу сопротивления воздуха пропорциональной площади поперечного сечения шариков.
(«Росатом», 2019, 11)

Источники: Росатом, 2019, 11

Показать ответ и решение

PIC

Поскольку на шар большего радиуса действует большая сила сопротивления воздуха, при движении шары расположатся друг над другом, причем шар большего радиуса окажется сверху (см. рисунок). Поэтому второй закон Ньютона для каждого имеет вид

({
  m1g =  T + F с,1
(                  (∗)
  m2g + T  = F с,2

где m1   и m2   – массы меньшего и большего шара соответственно, T  – сила натяжения нити, Fс,1   и F с,2   – силы сопротивления воздуха, действующие на меньшее и большее тело соответственно. Найдем связи между массами шаров и силами сопротивления. Очевидно

      8-
m2 =  3m1,   F с,2 = 4Fс,1

Поэтому система уравнений (*) дает

(
{ m1g  = T +  Fс,1
                       (∗)
(  8m1g +  T = 4F с,2
   3

Отсюда получаем

      4        16π
T  = ---m1g =  ----ρR3g
     15         15

(Официальное решение Росатом)

Ответ:
Критерии оценки

Критерии оценивания выполнения задачи

Баллы

Сказано, что больший шар окажется вверху

2

Записан второй закон Ньютона

2

Найдены связи между массами шаров и силами сопротивления

2

Решена система уравнений и найдена сила натяженяи нити

2

Представлен правильный ответ

2

Максимальный балл

10

Ошибка.
Попробуйте повторить позже

Задача 17#31781

Сферическая капля воды падает в воздухе с установившейся скоростью v0   . С какой установившейся скоростью v  будет падать капля воды, имеющая в n  раз большую массу? Считайте, что сферическая форма капли не меняется при увеличении её скорости, а сила сопротивления воздуха пропорциональна площади поперечного сечения и квадрату скорости движения капли. Для справки: объём шара радиусом R  равен      4-  3
V =  3πR   .
(Всеросс., 2014, ШЭ, 10)

Источники: Всеросс., 2014, ШЭ, 10

Показать ответ и решение

По условию

            2
Fсопр = kSV  ,

где k  – некоторый коэффициент пропорциональности.
При установившемся падении

Fсопр = Fтяж = mg

Пусть вначале капли имели площадь сечения S0   и массу m0   . Тогда

m0g  = kS0V 02

Аналогично, для случая с «добавкой»:

m1g  = kS1V 12

По условию m1  = nm0   . Значит, линейные размеры (радиус капель и т.п.) отличаются в 3√ --
  n  раз. Площади сечений относятся как квадраты линейных размеров, т.е. у тяжелой капли площадь сечения в   2∕3
n   раз больше:

S1 =  n2∕3S0

Подставим полученные соотношения в формулы равенства сил:

(
{  m0g =  kS0V 2
              0
(  (nm0  )g =  k(n2∕3S0)V12 .

Поделив уравнения друг на друга, получим

V 21 ∕V02= n1∕3

Отсюда

       √ --
V1 = V0 6n

(Официальное решение ВсОШ)

Ответ:

Ошибка.
Попробуйте повторить позже

Задача 18#31780

Полая металлическая сфера массой m  и радиусом R  всплывает со дна озера с постоянной скоростью. Груз какой массы нужно поместить внутрь сферы, чтобы она погружалась с такой же по модулю скоростью? Сила сопротивления, действующая на шар со стороны жидкости, зависит только от скорости шара относительно жидкости и направлена противоположно этой скорости. Плотность жидкости   ρ  , объём сферы равен      4-  3
V =  3πR   .
(Всеросс., 2019, ШЭ, 10)

Источники: Всеросс., 2019, ШЭ, 10

Показать ответ и решение

При всплытии сферы с постоянной скоростью сумма сил, действующих на неё, равна нулю. Вертикально вниз действуют силы тяжести mg  и сопротивления F сопр   , а вертикально вверх – сила Архимеда    Fарх   . При движении вниз с той же постоянной скоростью вертикально вниз действует сила тяжести (m  + Δm  )g  , где Δm  – масса добавленного груза, а вертикально вверх – такая же сила Архимеда F арх   , как в первом случае, и сила сопротивления Fсопр   (неизменная по модулю в силу равенства модулей скоростей сферы относительно воды в обоих случаях). Таким образом:

(
{
  Fарх = mg +  Fсопр
( F   =  (m + Δm  )g − F
   арх                  сопр

Сложив уравнения, получим:

2Fарх = 2mg  + Δmg

                                     (            )
Δm   = 2 Fарх −-mg-=  2(ρV − m ) = 2   4πR3 ρ − m
             g                         3

(Официальное решение ВсОШ)

Ответ:
Рулетка
Вы можете получить скидку в рулетке!